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Abstract

In this work we present a theoretical treatment of the Kerr effect based on third-order nonlinear optical processes.
When an intense electric field is placed in a media, a birefringence is induced and the refractive index depends on the
square of the of the amplitude of the electric field. Depending on the nature of the electric field we can describe two
phenomena: the electro-optic Kerr effect and the optical Kerr effect. In analogy to these effects we also explore an
introduction to the magneto-optical Kerr effect and some different applications.

1 Introduction

Birefringence was first observed in the 17th century when
sailors visiting Iceland brought back to Europe calcite
crystals that showed double images of objects that were
viewed through them. This effect was first described by
the Danish scientist Rasmus Bartholin in 1669. How-
ever, it was not until 1823 that Augustin-Jean Fresnel
described the phenomenon in terms of polarization, un-
derstanding light as a wave with field components in
transverse polarizations.

In 1875, the Scottish physicist John Kerr observed
the change in the refractive index of organic liquids and
glasses in the presence of an electric field. This effect
is often associated with the birth of nonlinear optics [1].
Kerr found that an isotropic transparent substance be-
comes birefringent when it is placed in an electric field
[2]. The medium takes on the characteristics of an uniax-
ial crystal whose optic axis corresponds to the direction
of the applied field, as shown in Fig(1).

Figure 1: Kerr effect schematically shown. A source of
linear polarization propagates in an electric field region.
The net result is the appearance of elliptical polarization
that indicates the change in the refractive index of the
medium.

The quadratic electro-optic effect originates in the bire-
fringence that is induced by the electric field. The inven-
tion of the laser in 1960 provided light sources with high-
enough electric field strengths to induce the Kerr effect

with a second laser that replaces the applied voltage [1].
This latter phenomena is called the Optical Kerr Effect.
In this work we are going to discuss three phenomena:
the quadratic electro-optical Kerr effect, also called DC
Kerr effect (or simply Kerr effect), the optical Kerr ef-
fect or AC Kerr effect and and we will explore a brief
introduction to the magneto-optical Kerr effect.

2 Intensity-dependent refractive
index

Nonlinear Optics is concerned with understanding the
behavior of light-matter interactions when the material’s
response is a nonlinear function of the applied electro-
magnetic field. The interaction of a beam of light with a
nonlinear optical medium can also be described in terms
of the nonlinear polarization.

For a nonlinear material, the electric polarization field
P will depend on the electric field E:

P = ε0χ
(1)E + ε0χ

(2)EE + ε0χ
(3)EEE + · · ·, (1)

where ε0 is the vacuum permittivity and χ(n) is the n-
th order component of the electric susceptibility of the
medium. We can write that relationship for the i-th com-
ponent for the vector P, expressed as:

Pi = ε0

3∑
j=1

χ
(1)
ij Ej + ε0

3∑
j=1

3∑
k=1

χ
(2)
ijkEjEk

+ ε0

3∑
j=1

3∑
k=1

3∑
l=1

χ
(3)
ijklEjEkEl + · · ·

(2)

For simplicity we are assuming here that the light
is linearly polarized and are suppressed the tensor in-
dices of χ; its tensor nature is addressed in the follow-
ing section. If we consider an electric field with the form
Ẽ(t) = E(ω)e−iωt+c.c. The total polarization of the ma-
terial system is then described by Eq.(3); its derivation
and a complete analysis can be found in [3]. However,
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it is worth pointing out that the different numerical pre-
factors in Eq.(3) result from the permutation operation
in Eq.(2)

PTOT(ω) = ε0χ
(1)E(ω) + 2ε0χ

(2)E(ω)E(0)

+ 3ε0χ
(3)|E(ω)|2E(ω) + · · ·

(3)

If we consider the two first terms of Eq.(3), this ap-
proximation is known as the linear electro-optic Pockels
effect, which leads to an electric-field induced change in
the refractive index [4]. On the other side, the part of the
nonlinear polarization that influences the propagation of
a beam of frequency ω is just given by the third term of
Eq.(3), which leads us to the study of the Kerr effect. In
this case, we can express the polarization as

P (ω) ∼= ε0χ
(1)E(ω) + 3ε0χ

(3)|E(ω)|2E(ω)

≡ ε0χeffE(ω),
(4)

where we have introduced the effective susceptibility
χeff = χ(1) + 3ε0χ

(3)|E(ω)|2.

Besides that, the refractive index of many optical ma-
terials depends on the intensity of the light used to mea-
sure it. The refractive index of many materials can be
described by the relation [5]

n = n0 + n̄2

〈
Ẽ2
〉
, (5)

where n0 represents the usual zero-field or weak-field re-
fractive index, and n̄2 (sometimes called the second-order
index of refraction) gives the rate at which the refractive
index increases with the optical intensity. In order to
relate the nonlinear susceptibility χ(3) to the nonlinear
refractive index n̄2, we can take n2 = 1 + χeff . Compar-
ing with Eqs.(4) and (5), we can show that the linear and
nonlinear refractive indices are related to the linear and
nonlinear susceptibilities by

n0 = (1 + χ(1))1/2 (6)

n̄2 =
3χ(3)

4n0
. (7)

3 Third-order nonlinear processes

The most general third-order nonlinear process involves
the interaction of waves at four different frequencies,
linked by: ω1 + ω2 + ω3 = ω4. Fortunately, in all com-
mon cases, some of the frequencies are the same, and
some may be also zero, or the negatives of the others.
The polarization at ω4 is given by

P̂i(ω4) =
1

2
ε0
∑
p

∑
jkl

χ
(3)
ijkl(ω4;ω1, ω2, ω3)

Êj(ω1)Êk(ω2)Êl(ω3),

(8)

where ijkl can be x, y or z, and
∑

p indicates the right-
hand side is to be summed over all distinct permutations

of ω1, ω2 and ω3. This means that the form of the po-
larization depends on the frequency arranged and it is
specific of the kind of process. So, for the DC Kerr effect
we have (ω = 0 + 0 + ω)

P̂i(ω) = 3ε0
∑
jkl

χK
ijkl(ω; 0, 0, ω)Êj(0)Êk(0)Êl(ω). (9)

This concerns refractive index changes caused by an
applied DC field.

In the optical or AC Kerr effect, an intense beam
of light in a medium can itself provide the modulat-
ing electric field, without the need for an external field
to be applied. For the optical Kerr effect we have
(ω1 = ω2 − ω2 + ω1)

P̂i(ω1) =
3

2
ε0
∑
jkl

χOK
ijkl(ω1;ω2,−ω2, ω1)Êj(ω2)Ê∗k(ω2)Êl(ω1).

(10)
In this case, the refractive index of an optical wave at

ω1 is modified in the presence of a wave at ω2. It should
be also noted that in cases where two (or more) opti-
cal waves are involved, these need not necessarily travel
in the same direction. There is, for example, no reason
in principle why the two waves in Eq.(10) need to be
collinear, and in this case their frequencies could even be
the same.

3.1 Tensor nature of the third order sus-
ceptibility

Let us see how to determine the tensor nature of the
third-order susceptibility for the case of an isotropic
material such as a glass, a liquid, or a vapor. We
begin by considering the general case in which the
applied frequencies are arbitrary, and we represent the
susceptibility as χijkl ≡ χ

(3)
ijkl(ω4 = ω1 + ω2 + ω2). In a

lossless crystal of the most general triclinic symmetry,
there are 34 = 81 independent nonlinear coefficients, for
other symmetry classes, the number is lower and a list
of independent coefficients in each class can be found
in [5]. In an isotropic media, in which all directions
are equivalent, the orientation of the xyz− axes can be
chosen to make calculations as simple as possible. In
this case, only 21 of the 81 coefficients are non-zero, and
these are of four types: type 1 (three members) in which
all indices are identical (χ1 ≡ χiiii), and types 2, 3 and 4
(six members each) in which two pairs of indices aree the
same, namely χ2 = χjjkk, χ3 = χjkjk and χ4 = χjkkj

(j 6= k).

The numbering scheme ensures that indices 1 and 2
are the same in χ2, indices 1 and 3 in χ3, and 1 and 4 in
χ4. Within each type, all members are equal and, as we
shall show in a moment, the symmetry of a structurally
isotropic medium imposes the further constraint that

χ1 = χ2 + χ3 + χ4 (11)

In terms of indices, the 21 non-zero coefficients can be
listed as follows:
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1 : xxxx = yyyy = zzzz

2 : xxyy = yyzz = zzxx = yyxx = zzyy = xxzz

3 : xyxy = yzyz = zxzx = yxyx = zyzy = xzxz

4 : xyyx = yzzy = zxxz = yxxy = zyyz = xzzx

(12)

The key conclusion is that a structurally isotropic
medium has just three independent third-order coeffi-
cients. For collinear beams, it makes sense to set the
z−axis along the direction of propagation, in which case
all coefficients involving z in Eq.(12) can be ignored; this
reduces the number of relevant non-zero coefficients from
21 to 8. Moreover, if all beams are plane polarized in the
same direction, the x−axis can be chosen as the direction
of polarization, in which case the only relevant coefficient
is χxxxx = χ1.

3.2 Electro-optical Kerr effect

In the Electro-optical or DC Kerr effect, a strong DC
field changes the refractive index of a medium. If the DC
field is y-polarized, Eq.(9) indicates that the respective
polarizations in the x and y directions are

P̂x(ω) = 3ε0χ
K
xyyx(ω; 0, 0, ω)E2

y(0)Êx(ω)

= 3ε0χ
K
4 E

2
y(0)Êx(ω)

P̂y(ω) = 3ε0χ
K
yyyy(ω; 0, 0, ω)E2

y(0)Êy(ω)

= 3ε0χ
K
1 E

2
y(0)Êy(ω).

(13)

Using Eq.(7), the DC field creates a refractive index dif-
ference between the two polarizations given by

n‖ − n⊥ ∼=
3(χK

1 − χK
4 )E2

y(0)

2n
=

3χK
2 E

2
y(0)

n
, (14)

where n‖ and n⊥ are the respective indices for light po-
larized parallel and perpendicular to the DC field, and n
is the zero field refractive index. From Eq.(11), and be-
cause χK

2 and χK
3 are indistinguishable from Eq.(9). The

Kerr constant K of a medium is defined by the equation

∆n ≡ n‖ − n⊥ = λ0KE
2(0), (15)

where λ0 is the wavelength in vacuum and K =
3χK

2 /(λ0n). This difference in index of refraction causes
the material to act like a waveplate when light is incident
on it in a direction perpendicular to the electric field. If
the material is placed between two perpendicular linear
polarizers, no light will be transmitted when the electric
field is turned off, while nearly all of the light will be
transmitted for some optimum value of the electric field.

3.3 Optical Kerr effect

In the optical Kerr effect, a strong wave at frequency
ω2 and intensity I(ω2) changes the refractive index of a
weak probe wave at ω1, a process known as cross-phase
modulation. If the two waves have the same polarization,
the operative term in the polarization is

P̂x(ω1) =
3

2
ε0χ

OK
xxxx(ω1; ω2,−ω2, ω1)|Êx(ω2)|2Êx(ω1),

(16)
which implies that the refractive index of the weak wave
is changed by

∆nx ∼=
3χOK

xxxxI(ω2)

2n(ω1)n(ω2)cε0
. (17)

If, on the other hand, the weak and strong waves are,
respectively, x and y-polarized, Eq.(16) becomes

P̂x(ω1) =
3

2
ε0χ

OK
xyyx(ω1; ω2,−ω2, ω1)|Êy(ω2)|2Êx(ω1).

(18)
This is the same as Eq.(16) apart from the fact that it
contains a type 4 coefficient, and so the index change
is weaker. One cannot say that it is three times as
weak, because the type 2, 3 and 4 coefficients are not
necessarily equal in this case.

An important special case of the optical Kerr effect
occurs when a single beam at ω = ω1 = ω2 modifies
its own refractive index. For the case of plane polarized
light, Eq.(10) can be written in the simple form

P̂x(ω) =
3

4
ε0χ

OK
1 (ω; ω,−ω, ω)|Êx(ω)|2Êx(ω). (19)

This implies that the refractive index is changed to

n = n0 +

(
3χOK

1

4n2
0cε0

)
I = n0 + n2I, (20)

where I is the intensity, n0 is the low-intensity index,
and the equation defines n2 as the nonlinear refractive in-
dex. It is no surprise that the refractive index change im-
plied by Eq.(20) is essentially the same as that of Eq.(17);
the extra factor of 2 in the denominator of n2 arises from
the different pre-factors in Eq.(10).

A full justification of Eqs.(16)-(19) is given in [3] [6].
Again, it is worth pointing out that the different numer-
ical pre-factors in Eqs. (16)-(19) result from the permu-
tation operation in Eq.(8).

4 Applications of the Kerr effect

The optical Kerr effect, plays a significant role in nonlin-
ear optics using high-power pulsed lasers. It is one of the
mechanisms contributing to self-focusing in liquids and
solids and has also been used as a fast optical shutter
for picosecond optical pulses. Some of the areas of appli-
cation of the Kerr effect includes spectroscopy of liquids
including the study of liquid mixtures and the behav-
ior of liquids in nanoconfinement [7], the development
of waveguides (devices constructed out of a birefringent
material, for which the index of refraction is different for
different orientations of light passing through it) [8] and
photonic and electro-optic devices [9] [10]. Fig. 2 shows
an induced birefringence of graphene oxide liquid crystals
with an extremely large Kerr coefficient allowed to fabri-
cate electro-optic devices with macroscopic electrodes, as
well as well-aligned, defect-free graphene oxide over wide
areas [11].
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Figure 2: Electric-field-induced birefringence. Top
row: Field-induced birefringence was generated by ap-
plying electric fields (10 kHz) to an aqueous 0.1 vol%
graphene oxide dispersion. When the field was switched
off, the field-induced birefringence almost disappeared,
with only slight nematic aggregation remaining. Bottom
row: In the same cell structure with a 1.1 vol% GO LC,
no change was detected up to 20 V mm−1 [11].

5 Magneto-optical Kerr effect

The magneto-optic Kerr effect (MOKE) is the phe-
nomenon that the light reflected from a magnetized
material has a slightly rotated plane of polarization [12].
It is similar to the Faraday effect where the plane of
polarization of the transmitted light is rotated.

Because of the different magnetization directions
relative to the plane of the incident light there are three
different configurations for MOKE as depicted in Fig.(3).
In the polar Kerr effect configuration the magnetization
M lies perpendicularly to the sample surfaces. In the
case of longitudinal Kerr effect M lies parallel to the
sample surfaces and to the plane of incidence. In the
equatorial or transverse configuration M lies parallel to
the sample surfaces and perpendicular to the plane of
incidence.

Figure 3: Illustration of variant configurations for the
magneto-optic Kerr effect. M represents the direction
of magnetization. The axis is formed by the plane of
incidence indicated by ω [12].

The MOKE has attracted considerable interest in re-
cent years because of its wide application in magneto-
optic recording devices. Thanks to its high accuracy, high
temporal and spatial resolution and very fast response
the MO probe has become a powerful method to study
the magnetic properties of ultrathin and multilayer films,

and studies of two-dimensional Ising model behavior of
ultrathin layers [13] are some out of many examples.

6 Conclusions

A study of some of the different types of electro-optical
effects has been presented trying to understand the be-
havior of the interaction of light with matter when the
response of the medium is a non-linear function of the
applied electric or magnetic field. It has been explored
in some properties of the electric susceptibility tensor,
necessary to explain the non-linear effects, considering
symmetries in isotropic media. Both the electro-optical
and optical Kerr effect and and the magneto-optical have
many powerful applications that are already being car-
ried out in research.
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